Publications & Preprints
Preprints
- N.-D. Reiter, J. Wahl, G. C. Hegerl, and J. Runge, Asymptotic Uncertainty in the Estimation of Frequency Domain Causal Effects for Linear Processes, Preprint: arXiv:2406.18191, 2024.
- N.-D. Reiter, J. Wahl, A. Gerhardus, and J. Runge, Causal Inference on Process Graphs, Part II: Causal Structure and Effect Identification, Preprint: arXiv:2406.17422, 2024.
- J. Wahl and J. Runge, Metrics on Markov Equivalence Classes for Evaluating Causal Discovery Algorithms, Preprint: arXiv:2402.04952, 2024.
- A. Gerhardus, J. Wahl, S. Faltenbacher, U. Ninad, and J. Runge, Projecting infinite time series graphs to finite marginal graphs using number theory, Preprint: arXiv:2310.05526, 2023.
- N.-D. Reiter, A. Gerhardus, J. Wahl, and J. Runge, Causal Inference on Process Graphs, Part I: The Structural Equation Process Representation, Preprint: arXiv:2305.11561, 2023.
Publications
- J. Wahl, U. Ninad, and J. Runge, Foundations of Causal Discovery on Groups of Variables, Journal of Causal Inference, 12 (1), p. 20230041, 2024.
- S. Bing, T. Hochsprung, J. Wahl, U. Ninad and J. Runge, Invariance & Causal Representation Learning: Prospects and Limitations, Transactions on Machine Learning Research (TMLR), 2835-8856, 2024.
- S. Bing, U. Ninad*, J. Wahl*, and J. Runge, Identifying Linearly-Mixed Causal Representations from Multi-Node Interventions, Proceedings of the Third Conference on Causal Learning and Reasoning (CLeaR), PMLR 236:843-867, 2024.
- T. Hochsprung, J. Wahl*, A. Gerhardus*, U. Ninad* and J. Runge, Increasing Effect Sizes of Pairwise Conditional Independence Tests between Random Vectors. Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, PMLR 216:879-889, 2023.
- J. Wahl*, U. Ninad* and J. Runge, Vector causal inference between two groups of variables. Proceedings of the AAAI Conference on Artificial Intelligence, 37(10), 12305-12312, 2023.
- W. Günther, U. Ninad*, J. Wahl* and J. Runge, Conditional Independence Testing with Heteroskedastic Data and Applications to Causal Discovery, Advances in Neural Information Processing Systems (NeurIPS) 35, 2022.
- J. Wahl, Traces on Diagram Algebras II: Centralizer algebras of easy groups and new variations of the Young graph. Algebraic Combinatorics 5 (2022), no. 3, 413-436.
- J. Wahl, Traces On Diagram Algebras I: Free Partition Quantum Groups, Random Lattice Paths And Random Walks On Trees. Journal of the London Mathematical Society 105 (2022), no. 4, 2324-2372.
- S. Vaes and J. Wahl, Bernoulli actions of type III_1 and L^2-cohomology, Geom. and Func. Anal. (GAFA) 28 (2018), 518–562.
- Y. Arano, T. de Laat and J. Wahl,The Fourier algebra of a rigid C*-tensor category, Publ. Res. Inst. Math. Sci. 54 (2018), no. 2, 393–410.
- P. Tarrago and J. Wahl, Free wreath product quantum groups and standard invariants of subfactors, Advances in Mathematics 331 (2018), 1–57.
- Y. Arano, T. de Laat and J. Wahl, Howe-Moore type theorems for quantum groups and C*-tensor categories, Compos. Math. 154 (2018), no. 2, 328–341.
- J. Wahl, A note on reduced and von Neumann algebraic free wreath products, Illinois J. Math. 59 (2015) no. 3, 801–817.
Workshop Contributions and other Scientific Writings
- C. Lohse and J. Wahl, Sortability of Time Series Data, peer-reviewed contribution to the Workshop Causal Inference for Time Series (CI4TS) at UAI 2024.
- M. Prasow-Émond, Y. Plancherel, P.J. Mason, M.D. Piggott, and J. Wahl, Impacts of Climate Change on Small Island Nations: A Data Science Framework using Remote Sensing and Observational Time Series, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18919, 2024.
- S. Bing, J. Wahl*, U. Ninad* and J. Runge, Invariance & Causal Representation Learning: Prospects and Limitations, peer-reviewed contribution to NeurIPS 2023 Workshop on Causal Representation Learning.
- M. Langer, K. Baum, K. Hartmann, S. Hessel, T. Speith, J. Wahl, Explainability auditing for intelligent systems: a rationale for multi-disciplinary perspectives. 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW) (2021), 164-168.
- J. Wahl, Where are all the guns? Modeling firearm ownership in the United States. Patterns 3 (2022), no. 8, 100571.
This is a review article on a paper using causal inference techniques to model firearm ownership.
PhD Thesis
Cookie Consent Banner by Real Cookie Banner